Edited by:Mohammad Hezarkhani MD,Urologist
Board-Certified of Urology,Tehran University ,The Member of Iranian Urological Association
Madaen Hospital Tehran Iran
Tehran clinic Hospital Tehran Iran
Mohammad.hezarkhani@yahoo.com
www.Hezarkhani.blogfa.com hosted in Washington DC, United States
11,October, 2013
Background
Ketamine is a drug used in human and veterinary medicine, primarily for the induction and maintenance of general anesthesia, usually in combination with a sedative. Other uses include sedation in intensive care, analgesia (particularly in emergency medicine), and treatment of bronchospasm. Ketamine has a wide range of effects in humans, including analgesia, anesthesia, hallucinations, elevated blood pressure, and bronchodilation. Like other drugs of its class, such as tiletamine and phencyclidine (PCP), ketamine induces a state referred to as "dissociative anesthesia" and is used as a recreational drug.
Ketamine is effective in treating depression in patients with depression and bipolar disorder who have not responded to antidepressants. It produces a rapid antidepressant effect, acting within two hours as opposed to the several weeks taken by typical antidepressants to work.
Its hydrochloride salt is sold as Ketanest, Ketaset, and Ketalar. Pharmacologically, ketamine is classified as an NMDA receptor antagonist. At high, fully anesthetic level doses, ketamine has also been found to bind to μ-opioid receptors type 2 in cultured human neuroblastoma cells – however, without agonist activity – and to sigma receptors in rats. Also, ketamine interacts with muscarinic receptors, descending monoaminergic pain pathways and voltage-gated calcium channels.

Ketamine is a chiral compound. Most pharmaceutical preparations of ketamine are racemic; however, some brands reportedly have (mostly undocumented) differences in their enantiomeric proportions. The more active enantiomer, (S)-ketamine, is also available for medical use under the brand name Ketanest S.
According to a recent systematic review, 110 documented reports of irritative urinary tract symptoms from ketamine dependence exist. Urinary tract symptoms have been collectively referred as "ketamine-induced ulcerative cystitis" or "ketamine-induced vesicopathy", and they include urge incontinence, decreased bladder compliance, decreased bladder volume, detrusor overactivity, and painful haematuria (blood in urine). Bilateral hydronephrosis and renal papillary necrosis have also been reported in some cases. The pathogenesis of papillary necrosis has been investigated in mice, and mononuclear inflammatory infiltration in the renal papilla resulting from ketamine dependence has been suggested as a possible mechanism.
The time of onset of lower urinary tract symptoms varies depending, in part, on the severity and chronicity of ketamine use; however, it is unclear whether the severity and chronicity of ketamine use corresponds linearly to the presentation of these symptoms. All reported cases where the user consumed greater than 5 grams per day reported symptoms of the lower urinary tract. Urinary tract symptoms appear to be most common in daily ketamine abusers who have abused the drug for an extended period of time. These symptoms have presented in only one case of medical use of ketamine. However, following dose reduction, the symptoms remitted.
Management of these symptoms primarily involves ketamine cessation, for which compliance is low. Other treatments have been used, including antibiotics, NSAIDs, steroids, anticholinergics, and cystodistension.
Both hyaluronic acid instillation and combined pentosan polysulfate and ketamine cessation have been shown to provide relief in some patients, but in the latter case, it is unclear whether relief resulted from ketamine cessation, administration of pentosan polysulfate, or both. Further follow-up is required to fully assess the efficacy of these treatments.
In addition, extreme cases are associated with severe unresolving bladder pain in conjunction with a thickened, contracted bladder and an ulcerated/absent urothelium. Reseachers report on unusual neuropathological features seen by immunohistology in ketamine cystitis. In all cases, the lamina propria was replete with fine neurofilament protein (NFP+) nerve fibres and in most patients (20/21), there was prominent peripheral nerve fascicle hyperplasia that showed particular resemblance to Morton’s neuroma.
The nerve fascicles, which were positive for NFP, S100 and the p75 low-affinity nerve growth factor receptor (NGFR), were generally associated with a well-developed and in places, prominent, epithelial membrane antigen+/NGFR+ perineurium. This peripheral nerve fascicle hyperplasia is likely to account for the extreme pain experienced by ketamine cystitis patients.
Urothelial damage was a notable feature of all ketamine cystitis specimens and where urothelium remained, increased NGFR expression was observed, with expansion from a basal-restricted normal pattern of expression into the suprabasal urothelium.
The histological findings were distinguishing features of ketamine cystitis and were not present in other painful bladder conditions. Ketamine cystitis afflicts predominantly young patients, with unknown long-term consequences, and requires a strategy to control severe bladder pain in order to remove a dependency on the causative agent. Our study indicates that the development of pain in ketamine cystitis is mediated through a specific neurogenic mechanism that may also implicate the urothelium.
References:
1-Nerve hyperplasia: a unique feature of ketamine cystitis
Simon C Baker1*, Jens Stahlschmidt2, Jon Oxley3, Jennifer Hinley1, Ian Eardley2, Fiona Marsh2, David Gillatt3, Simon Fulford4 and Jennifer Southgate1* /Acta Neuropathologica Communications 2013, 1:64 doi:10.1186/2051-5960-1-64/Published: 8 October 2013
2- Ketamine Wikipedia,The Free Encyclopedia 10.October.2013